首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13825篇
  免费   1007篇
  国内免费   866篇
电工技术   266篇
综合类   542篇
化学工业   2973篇
金属工艺   1942篇
机械仪表   410篇
建筑科学   162篇
矿业工程   128篇
能源动力   900篇
轻工业   161篇
水利工程   346篇
石油天然气   534篇
武器工业   55篇
无线电   1957篇
一般工业技术   4603篇
冶金工业   248篇
原子能技术   322篇
自动化技术   149篇
  2024年   15篇
  2023年   252篇
  2022年   287篇
  2021年   418篇
  2020年   451篇
  2019年   436篇
  2018年   384篇
  2017年   507篇
  2016年   457篇
  2015年   438篇
  2014年   616篇
  2013年   800篇
  2012年   885篇
  2011年   1191篇
  2010年   923篇
  2009年   938篇
  2008年   820篇
  2007年   878篇
  2006年   865篇
  2005年   655篇
  2004年   595篇
  2003年   553篇
  2002年   402篇
  2001年   284篇
  2000年   266篇
  1999年   196篇
  1998年   218篇
  1997年   168篇
  1996年   162篇
  1995年   171篇
  1994年   109篇
  1993年   68篇
  1992年   58篇
  1991年   56篇
  1990年   44篇
  1989年   32篇
  1988年   21篇
  1987年   15篇
  1986年   17篇
  1985年   13篇
  1984年   4篇
  1983年   11篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1974年   2篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Although substrate wettability greatly impacts deposition processes using the spin-spray technique, there are few substrates suitable for the deposition of spin-sprayed ferrite thin films. To tune substrate wettability without changing the type of substrate, we demonstrate a Ni0.17Zn0.52Fe2.31O4 ferrite film deposited by the spin-spray technique on a 0.2 mm glass substrate with 0–5% aqueous ethanol solutions. All samples showed (222) preferential orientation and triangular grain morphology. The effects of aqueous ethanol solutions on the microstructure and magnetic properties of ferrite thin films were also investigated. When the ethanol volume percent concentration equaled 3%, the columnar morphology of the microstructure was most evident and the saturation magnetization and the real permeability reached their maximum values. Because of the shape anisotropy of the columnar structure, the coercivity of the parallel magnetic field increased, whereas the coercivity of the perpendicular magnetic field decreased. First-order inversion curve measurements revealed that ethanol-containing ferrite thin films had a more uniform grain size.  相似文献   
102.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
103.
《Ceramics International》2021,47(23):32969-32978
In this study, hydroxyapatite-based hydroxyapatite-wollastonite-boron nitride (HAp-Wo-BN) composite film was formed on the surface of Ti6Al4V by pulsed laser deposition (PLD). Based on a survey in scientific literature, it is presumed that this is the first time such a process is being undertaken. The wear and corrosion resistance of this film were analyzed comparatively in simulated body fluid (SBF) to simulate the human body environment. In the coating, HAp was used to form a bone-like layer, wollastonite was to enhance bone-tissue regeneration and BN was used for its bone-tissue healing and anti-bacterial properties. The results showed that the wear as well as the corrosion resistance of all samples after PLD treatment increased. Relatively the best wear resistance was achieved from boron nitride and wollastonite doped hydroxyapatite layers, where the best corrosion resistance was from the ones that consisted of only hydroxyapatite.  相似文献   
104.
We present here an original route for the manufacturing of SiC ceramics based on 3D printing, polymer impregnation and pyrolysis and chemical vapor deposition (CVD). The green porous elastomer structures were first prepared by fused deposition modeling (FDM) 3D-printing with a composite polyvinyl alcohol/elastomer wire and soaking in water, then impregnated with an allylhydridopolycarbosilane preceramic polymer. After crosslinking and pyrolysis, the polymer-derived ceramics were reinforced by CVD of SiC using CH3SiCl3/H2 as precursor. The multiscale structure of the SiC porous specimens was examined by X-ray tomography and scanning electron microscopy analyses. Their oxidation resistance was also studied. The pure and dense CVD-SiC coating considerably improves the oxidation resistance.  相似文献   
105.
Cubic boron nitride (c-BN) has an ultrahardness and a large bandgap energy like diamond. In the last 30 years, most of the attention has been directed towards the mechanical and electronic applications of c-BN, while its biological potential has been overlooked. The authors report in vitro biocompatibility of high-quality c-BN films prepared by plasma-enhanced chemical vapor deposition using the chemistry of fluorine. c-BN films become superhydrophilic when chemical-treated in hydrogen and nitrogen plasmas with or without the impact of low-energy ions due to a marked increase in polar part of the surface free energy by removal of the fluorine atoms terminating c-BN surfaces. Satisfactory proliferation and differentiation of osteoblastic cells comparable with a control sample and a superhydrophilic nanocrystalline diamond film, and the formation of mineral deposits by biomineralization are confirmed on the superhydrophilic c-BN films with negative values of zeta potential. The results demonstrate a high potential of c-BN as a noncytotoxic ultrahard coating material for biological and biomedical applications.  相似文献   
106.
作为平板结构钙钛矿太阳能电池的电荷传输层,金属氧化物薄膜对器件性能有重要影响. 系统性概述平板结构钙钛矿太阳能电池对金属氧化物薄膜形貌、电学、光学、化学及热等物理特性要求,并对目前在高效钙钛矿太阳电池制备中最有前景的金属氧化物电子传输层及空穴传输层材料特性及代表性工作进行总结. 针对大多数金属氧化物迁移率低、表面缺陷多及能级匹配差的问题,分析元素掺杂、表面改性、复合薄膜设计等手段解决的相关进展. 总结目前金属氧化物薄膜沉积技术现状及优缺点,探讨今后薄膜沉积技术发展、改进方向. 对低温沉积金属氧化物薄膜在柔性器件方面的应用进行展望.  相似文献   
107.
In this study, we investigated surface and biological properties of Ag–Sr-doped mesoporous bioactive glass nanoparticle (Ag–Sr MBGN) loaded chitosan/gelatin coatings deposited by electrophoretic deposition (EPD) on 316L stainless steel. The EPD parameters, that is, deposition time, applied voltage, and distance between the electrodes was optimized by the Taguchi design of experiment (DoE) approach. Scanning electron microscopy (SEM) images illustrated the spherical morphology of the synthesized Ag–Sr MBGNs with the mean particle size of 160 ± 20 nm. Energy-dispersive X-ray (EDX) spectroscopy results confirmed the presence of Ag and Sr in the synthesized MBGNs. Optimum EPD parameters determined by DoE approach were 5 g/L of Ag–Sr MBGNs, deposition time of 5 min, and applied voltage of 30 V. SEM images confirmed that the coatings were fairly homogenous. Fourier-transform infrared spectroscopy and EDX results confirmed the presence of chitosan, gelatin, and Ag–Sr MBGNs in the coatings. Chitosan/gelatin/Ag–Sr MBGN composite coatings exhibited suitable wettability for the protein attachment and proliferation of osteoblast cells. The composite coatings exhibited suitable adhesion strength with the substrate. The coatings developed HA crystals upon immersion in simulated body fluid. The results of the turbidity test confirmed that the coatings are antibacterial to the Escherichia coli cells.  相似文献   
108.
Recognizing the nature and formation progress of the ash deposits is essential to resolve the deposition problem hindering the wide application of large-scale biomass-fired boilers. Therefore, the ash deposits in the superheaters of a 220 t/h biomass-fired CFB boiler were studied, including the platen (PS), the high-temperature (HTS), the upper and the lower low-temperature superheaters (LTS). The results showed that the deposits in the PSs and HTSs were thin (several millimeters) and compact, consisting of a yellow outer layer and snow-white inner layer near the tube surface. The deposits in the upper LTS appeared to be toughly sintered ceramic, while those in the lower LTS were composed of dispersive coarse ash particles with an unsintered surface. Detailed characterization of the cross-section and the initial layers in the deposits revealed that the dominating compositions in both the PSs and the HTSs were Cl and K (approximately 70%) in the form of KCl. Interestingly, the cross-section of the deposition in the upper LTS exhibited a unique lamellar structure with a major composition of Ca and S. The contents of Ca and Si increased from approximately 10% to approximately 60% in the deposits from the high temperature surfaces to the low temperature ones. It was concluded that the vaporized mineral matter such as KCl played the most important role in the deposition progress in the PS and the HTS. In addition, although the condensation of KCl in the LTSs also happened, the deposition of ash particles played a more important role.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号